3 research outputs found

    Advancing characterisation with statistics from correlative electron diffraction and X-ray spectroscopy, in the scanning electron microscope.

    Get PDF
    The routine and unique determination of minor phases in microstructures is critical to materials science. In metallurgy alone, applications include alloy and process development and the understanding of degradation in service. We develop a correlative method, exploring superalloy microstructures, which are examined in the scanning electron microscope (SEM) using simultaneous energy dispersive X-ray spectroscopy (EDS) and electron backscatter diffraction (EBSD). This is performed at an appropriate length scale for characterisation of carbide phases' shape, size, location, and distribution. EDS and EBSD data are generated using two different physical processes, but each provide a signature of the material interacting with the incoming electron beam. Recent advances in post-processing, driven by 'big data' approaches, include use of principal component analysis (PCA). Components are subsequently characterised to assign labels to a mapped region. To provide physically meaningful signals, the principal components may be rotated to control the distribution of variance. In this work, we develop this method further through a weighted PCA approach. We use the EDS and EBSD signals concurrently, thereby labelling each region using both EDS (chemistry) and EBSD (crystal structure) information. This provides a new method of amplifying signal-to-noise for very small phases in mapped regions, especially where the EDS or EBSD signal is not unique enough alone for classification

    Mechanical properties and microstructure of additively manufactured stainless steel with laser welded joints

    Get PDF
    Powder bed fusion (PBF) is a commonly employed metal additive manufacturing (AM) process in which components are built, layer-by-layer, using metallic powder. The component size is limited by the internal build volume of the employed PBF AM equipment; the fabrication of components larger than this volume therefore requires mechanical joining methods, such as laser welding. There are, however, very limited test data on the mechanical performance of PBF metal with laser welded joints. In this study, the mechanical properties of PBF built 316L stainless steel parts, joined together using laser welding to form larger components, have been investigated; the microstructure of the components has also been examined. 33 PBF 316L stainless steel tensile coupons, with central laser welds, welded using a range of welding parameters, and with coupon half parts built in two different orientations, were tested. The porosity, microhardness and microstructure of the welded coupons, along with the widths of the weld and heat-affected zone (HAZ), were characterised. The PBF base metal exhibited a typical cellular microstructure, while the weld consisted of equiaxed, columnar and cellular dendrite microstructures. Narrow weld regions and HAZs were observed. The PBF base metal was found to have higher proof and ultimate strengths, but a similar fracture strain and a lower Young’s modulus, compared with conventionally manufactured 316L stainless steel. The strengths were dependent on the build direction – the vertically built specimens showed lower proof strengths than the horizontal specimens. The laser welds generally exhibited lower microhardness, proof strengths and fracture strains than the PBF base metal which correlated with the observed structure. This work has demonstrated that PBF built parts can be joined by laser welding to form larger components and provided insight into the resulting strength and ductility

    Mechanical and microstructural testing of wire and arc additively manufactured sheet material

    No full text
    Wire and arc additive manufacturing (WAAM) is a method of 3D printing that enables large elements to be built, with reasonable printing times and costs. There are, however, uncertainties relating to the structural performance of WAAM material, including the basic mechanical properties, the degree of anisotropy, the influence of the as-built geometry and the variability in response. Towards addressing this knowledge gap, a comprehensive series of tensile tests on WAAM stainless steel was conducted; the results are presented herein. As-built and machined coupons were tested to investigate the influence of the geometrical irregularity on the stress-strain characteristics, while material anisotropy was explored by testing coupons produced at different angles to the printing orientation. Non-contact measurement techniques were employed to determine the geometric properties and deformation fields of the specimens, while sophisticated analysis methods were used for post processing the test data. The material response revealed a significant degree of anisotropy, explained by the existence of a strong crystallographic texture, uncovered by means of electron backscatter diffraction. Finally, the effective mechanical properties of the as-built material were shown to be strongly dependent on the geometric variability; simple geometric measures were therefore developed to characterise the key aspects of the observed behaviour
    corecore